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ABSTRACT 

 

Introduction: Hepatitis B is one of the major causes of mortality and morbidity worldwide. Hepatitis 

B infection causes liver inflammation and damage, that may progress to liver cirrhosis, liver cancer 

and ultimately lead to death. The outcomes of hepatitis B virus exposure are highly variable and range 

from resistance to infection, spontaneous viral clearance, and chronic hepatitis B infection. This 

variability is moderated by a number of factors such as host genetics, viral factors and environmental 

factors. Genetic polymorphisms such as single nucleotide polymorphisms present in individuals of 

particular populations can be used to determine the risk of susceptibility to infectious and complex 

diseases. A plethora of studies have determined the host genetic impact such as inter-individual 

genome variability on differential susceptibility to     hepatitis B infection. However, most of these 

studies have been carried out in European populations. There is little data from genetic studies among 

African populations, which are known to be highly genetically diverse, as evidenced by high levels 

of phenotypic variation. This limits the generalizability of findings to African populations. This study 

identified the host genetic determinants influencing differential susceptibility to hepatitis B infection 

among a Ugandan population. It estimated the genetic variants present among Ugandans that account 

for differential susceptibility to hepatitis B infection. 

 

Objective: To investigate the host genetic impact on differential susceptibility to hepatitis B infection 

among a general population cohort in southwestern Uganda. 

 

Methods: Genome-wide association analysis using GEMMA software to find genomic loci that are 

associated with differential susceptibility to hepatitis B infection was performed, followed by fine- 

mapping using the Bayesian approach to determine the specific causal variants identified to be in the 

association. Replication of genome-wide association study findings was done to validate findings and  

check for reproducibility in summary statistics available on the genome-wide association study 

(GWAS) catalog. A two-sample Mendelian randomization (MR) was performed to determine the 

causal effect of hepatitis B infection on liver function biomarkers of alanine aminotransferase and 

aspartate transferase (ALT) and Aspartate Transferase (AST). 

 

Results: We identified 78 significant single nucleotide polymorphisms (SNPs) in 22 genomic loci 

associated with susceptibility to hepatitis B infection of which all 22 were novel. The most significant 



xii 

 

SNPs mapped to nearest genes POGK, MIXL1, RP11-24121.1, RP1-97D16.1, ADRB1, and RBFOX1 

which have previously been associated with the liver tissue and its enzymes. Replication of 

association findings was not successful in two independent cohorts of European ancestry individuals. 

The two sample MR revealed no causal effect of hepatitis B infection susceptibility on ALT and AST 

serum levels. 

 

Conclusion: This study identified existing and novel SNPs associated with differential susceptibility 

to hepatitis B infection present among Ugandans in a well-characterized General Population Cohort. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

1.1.1 Epidemiology of hepatitis B 

Hepatitis is defined as liver inflammation and damage caused by either viruses, heavy alcohol use, 

toxins, some medications, or particular medical conditions (WHO, 2022a). Hepatitis of viral origin  is 

termed as viral hepatitis and the commonest viral strains are hepatitis A, hepatitis B, and hepatitis C 

(WHO, 2022a). Viral hepatitis infection is a great health issue globally and it has been reported  to be 

associated with remarkable morbidity and mortality (Castaneda, Gonzalez, Alomari, Tandon, & 

Zervos, 2021). The global prevalence of hepatitis B infection was reported as 3.9% in 2016 with 

approximately 292 million people infected. The prevalence of hepatitis B infection differs across 

regions in the world with the highest endemicity noted in developing regions such as sub-Saharan 

Africa (Polaris Observatory, 2018). The variation in the prevalence of hepatitis B across regions in 

the world is driven by the differences in the predominant modes of transmission, the impact of 

vaccination programs, and the age at the time of infection in each of the world populations (Thomas 

et al., 2012; Zoulim & Durantel, 2015). The global prevalence of hepatitis B infection was reported as 

3.5% in 2019 with  approximately 296 million people infected whereby the highest prevalence was 

observed in the Western Pacific region, followed by the African region, and the lowest prevalence 

was observed in the Americas (WHO, 2021). Additionally, the World Health Organization reported 

an estimate of approximately 1.5 million new infections per year and an annual mortality of 820,000 

individuals mainly from complications of hepatocellular carcinoma and liver cirrhosis in 2019 

(WHO, 2021). The prevalence of hepatitis B  reported was lower in children below 5 years showing 

some evidence of successful and effectiveness of global vaccination programs against hepatitis B 

(Eng-Kiong & Lok, 2023).  

Hepatitis B transmission is primarily through contact with infected blood and other bodily fluids 

through either vertical transmission from mother to child during childbirth (Cheung & Lao, 2020), 

sharing contaminated needles, and unprotected sexual contact  or horizontally among contact sport 

athletes, in households, and institutionalized individuals (Sabeena & Ravishankar, 2022).  

A number of risk factors such as risky sexual behaviors, injection drug use, unsafe medical 

procedures, occupational exposure (health workers), blood transfusion, organ transplant, close 

household contact, and migration/travel contribute to the acquisition and transmission of hepatitis B 

(Gerlich, 2013; Hahne et al., 2013; Platt et al., 2016; Terrault et al., 2018). It is therefore important 

to understand them in a bid to come up with preventive strategies that are effective and efficient.  
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The hepatitis B virus is very stable at 37ºC on environmental surfaces for longer than 22 days and 

therefore vaccination, safe behaviors, and strict compliance with available hygienic guidelines and 

safety precautions are required in preventing and controlling hepatitis B infection (Than et al., 2019).   

 

1.1.2 Hepatitis B disease progression, treatment and prevention 

Hepatitis B can be classified as either acute - a recent positive result of hepatitis B surface antigen 

(HBsAg) with a discrete onset of symptoms such as fever, headache, malaise, vomiting, nausea, 

abdominal pain, and diarrhea probably accompanied with jaundice and elevated ALT levels (CDC, 

2021a) or chronic - characterized by the presence of HBsAg in blood for over six months with or 

without evidence of liver disease ranging from just chronic hepatitis to liver fibrosis, cirrhosis and/or 

liver cancer (CDC, 2021b).  

Liver disease progression is related to the levels of hepatitis B deoxyribonucleic acid (DNA) in the 

blood and therefore a lack of anti-retroviral treatment whose mechanism is to suppress viral 

replication and reduce liver inflammation and fibrosis would increase the incidence of cirrhosis, 

hepatocellular carcinoma and liver failure (NICE, 2017). The American Association for the Study of 

Liver Disease (AASLD) released the updated practice guidelines for the prevention, diagnosis, and 

treatment of chronic hepatitis B in 2018 (Terrault et al., 2018). These highlighted an addition of 

tenofovir alafenamide (TAF) to the list of preferred hepatitis B therapies which previously included 

entecavir, peg interferon (peg-IFN), and tenofovir disoproxil fumarate (TDF) (Terrault et al., 2018). 

A positive response to treatment is usually evidenced by normalization of serum levels of ALT, 

reduction in serum hepatitis B DNA to undetectable levels, loss of hepatitis B surface and envelope 

antigens followed by seroconversion to their respective antibodies, and reduced levels of liver 

inflammation seen from biopsies (NICE, 2017). 

Prevention of hepatitis B infection can be achieved through vaccination using the safe and effective 

hepatitis B vaccine whose active substance is the viral surface protein HBsAg (WHO, 2017). The 

most widely used vaccines for hepatitis B are recombinant vaccines and immunity achieved through 

vaccination is assessed by checking the levels of hepatitis B surface antibody (WHO, 2017). The 

world health organization recommends 3 doses of hepatitis B vaccines administered intramuscularly 

either into the anterolateral aspect of the thigh among infants or into the deltoid muscle for older 

children and adults (WHO, 2017).  
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1.1.3 Genetic risk for hepatitis B 

Hepatitis infection has a wide spectrum of clinical manifestations ranging from symptomatic cases, 

subclinical to asymptomatic in the first few days or weeks and differential severity in patients with 

active chronic hepatitis infection (Lanini, Ustianowski, Pisapia, Zumla, & Ippolito, 2019). A 

combination of multiple factors such as host, viral and environmental factors have been suggested      as 

causes of great differences in Hepatitis B infection outcome among individuals exposed to Hepatitis 

B virus (J. Xu, Zhan, Fan, Yu, & Zeng, 2021). Human genetic variation is one of the crucial 

determining factors of susceptibility to numerous day-to-day infectious diseases (Hill, 2006). Many  

genes are noted to have an effect on disease susceptibility to infectious microorganisms and can 

therefore be used to gain an understanding of mechanisms underlying protection and susceptibility 

to disease (Hill, 1998). Inter-individual genome variability significantly contributes  to the 

differences identified among individuals in susceptibility and resistance to particular  pathogens 

and their observed response to disease (Romero-Gomez, Eslam, Ruiz, & Maraver, 2011). This is 

revealed by differences in clinical outcomes and responses of infected individuals to the available 

treatment options (Romero-Gomez et al., 2011). 

Genome-wide association studies (GWAS) focus on estimating and analyzing variations in DNA 

sequences across the genome in order to find genetic risk factors for common diseases within a given 

population (Bush & Moore, 2012). Genome-wide association studies have been widely used to identify 

genetic associations traits using genetic markers such as single nucleotide polymorphisms (SNPs) 

throughout the genome (Mozzi, Pontremoli, & Sironi, 2018). Fortunately, GWAS are now looking into 

the evaluation of susceptibility to infectious diseases, a method that provides important insights into 

new unanticipated risk factors for susceptibility to infections (Mozzi et al., 2018). A given number 

of these GWAS have been carried out on hepatitis B infection, viral clearance and         disease progression 

in majorly European and Asian populations and little attention given to African populations (Akcay, 

Katrinli, Ozdil, Doganay, & Doganay, 2018). African populations are known for having highly 

diverse genomes (Tishkoff et al., 2009) and their inclusion in such studies could lead to the discovery 

of new risk factors  and also provide a deeper understanding of diseases (Gurdasani, Barroso, Zeggini, & 

Sandhu, 2019).   Additionally, the inclusion of different populations in genetic studies addresses the 

issue of equality in genetic findings available to the public.  

 

It should be noted that even though GWAS is robust and a very highly powered method of 

determining variants associated with disease, it does not identify specific causal variants and precisely 
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explain the underlying biological mechanisms for these genetic associations (Lin et al., 2018). This 

limitation therefore raises the need for post-GWAS analysis such as fine mapping to pinpoint the 

specific causal variants that are driving the association (Schaid, Chen, & Larson, 2018), replication 

to validate association findings (Marigorta, Rodriguez, Gibson, & Navarro, 2018) and Mendelian 

randomization to perform causal inference between traits (Davey Smith & Hemani, 2014).  

 

This study therefore sought to bridge the gap of underrepresentation of African populations in 

hepatitis B genetics research by conducting a genome- wide association study to determine the 

individual genetic impact on susceptibility to Hepatitis B infection. The study was carried out among 

Ugandan participants recruited from the general population cohort (GPC); a population-based open 

cohort consisting of individuals located in southwestern Uganda in Kyamulibwa sub-county of 

Kalungu district. This study aimed at facilitating the estimation of genetic effects of common and 

loss of function variants that may be potentially contributing to differential susceptibility of the study 

participants to hepatitis B, evaluate whether already reported findings were consistent        in an African 

population from Uganda and assess the causal effect of hepatitis B infection on liver function 

biomarkers. 

 

1.2 Statement of the Problem 

Genome-wide association studies have previously been used to provide remarkable insights into the 

genetic impact on individuals by identifying genetic loci and allelic polymorphisms that determine 

and influence genetic susceptibility and response to viral hepatitis (Romero-Gomez et al., 2011; 

Tong, Bock, & Velavan, 2014). However, most of these studies have been carried out in European 

populations. There is little data from genetic studies among African populations, which are known to 

be highly      genetically diverse, as evidenced by high levels of phenotypic variation (Henn, Cavalli-

Sforza, & Feldman, 2012). Additionally, a considerable amount of the hepatitis B global burden is 

carried by Africa, particularly, sub-Saharan Africa (Sonderup et al., 2017). 

A review study revealed that previous studies centered on cytokine genes, the human leukocyte 

antigen (HLA), and toll-like receptors to investigate the host genetic determinants of hepatitis B 

infection had yielded contradicting findings (Zhang et al., 2019). For instance, GWAS carried out 

among Asian, Thai, and Japanese populations revealed that polymorphisms in the HLA region were 

significantly associated with chronic hepatitis B infection while those among Chinese, Turkish, and 

Caucasian populations did not reveal these associations (Zhang et al., 2019). This seems to reinforce 
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the importance of carrying out population specific genetic studies to harness the opportunity to make 

new discoveries. This study seeks to bridge the gap of underrepresentation of African populations in 

hepatitis B genetics research by investigating the genetic determinants of hepatitis B infection 

susceptibility among Ugandans. 

 

1.3 General Objectives 

To investigate the host genetic impact on differential susceptibility to hepatitis B infection among the 

general population cohort in southwestern Uganda. 

 

1.4 Specific Objectives 

i) To identify existing and novel single nucleotide polymorphisms (SNPs) associated with 

susceptibility to hepatitis B infection among the Ugandan GPC participants. 

ii) To fine-map association signals at new and existing disease trait loci to zero down on the 

causal variants within the loci responsible for each association. 

iii) To check for replication of association findings in publicly available datasets 

iv) To find and assess the causal effect of Hepatitis B infection on the serum levels of liver 

function biomarkers of Alanine aminotransferase (ALT) and Aspartate Transferase (AST). 

 

1.5 Significance 

The study findings will contribute to the representation of Ugandans (Africans) in global hepatitis B 

genetics research. The inclusion of Africans in genetics research has the potential to discover SNPs 

and variants associated with differential susceptibility to hepatitis B and reveal the underlying 

pathways leading to the phenotypic variations noted. Additionally, since genomes of African ancestry 

individuals have lower linkage disequilibrium and high genetic heterogeneity, their inclusion in 

genetic studies could provide remarkable improvements in the localization of specific causal variants 

during fine mapping. These genes and variants identified can direct targeted efforts towards control 

of viral hepatitis B and may identify biological pathways underlying low or high risk of contracting 

hepatitis B infection. These identified pathways have the potential to lead researchers to new drugs 

or drug targets for the management of hepatitis B. Additionally, results could also enable scientists 

to come up with better clinical management strategies through patient stratification and personalized 

medicine in Uganda and Africa at large. 
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1.6 Conceptual Framework 

 

Figure 1: Conceptual Framework of the study 

 

Figure 1: Differential susceptibility to infection with viral hepatitis B is moderated by a combination 

of factors such as host factors, viral and environmental factors. An individual once exposed to 

hepatitis B virus may or may not get infected, and this variability may be caused by the presence of 

certain variants within their genes that may protect them or increase their risk of infection. 
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1 Burden of Hepatitis B 

Viral hepatitis as a cause of liver inflammation and damage has had a tremendous impact on human 

health and has contributed to the morbidity and mortality of patients with acute and chronic hepatitis 

infection (Castaneda et al., 2021). Viral hepatitis may be caused by hepatitis virus strains        A, B, C, D, 

and E, however, hepatitis strains B and C are the commonest causes of liver cancer, liver cirrhosis, 

and deaths due to viral hepatitis (WHO, 2022a). The World Health Organization reported 

approximately 354 million people to be living with hepatitis B or C in the world (WHO, 2022a). 

Hepatitis B virus causes acute and chronic hepatitis infections which may or may not generate mild 

or severe symptoms among the patients or resolve spontaneously (Pardee, 2019). Acute hepatitis B 

is short-term illness that occurs within 6 months after exposure to hepatitis B virus evidenced by the 

presence of jaundice, confirmed positive hepatitis B surface and core antigen tests, and elevated alanine 

transaminase levels (Wilkins, Sams, & Carpenter, 2019). Chronic hepatitis B is the prolonged 

existence of hepatitis B surface antigen for longer than 6 months (Wilkins et al., 2019). According to 

the World Health Organization’s global progress report on HIV, viral hepatitis, and sexually 

transmitted diseases released in 2021, 1.5 million new infections with acute and chronic hepatitis B 

were noted globally, with 820,000 deaths from hepatitis B (WHO, 2021). The  African region alone 

contributed 990,000 (66%) new infections and 80,000 deaths from hepatitis B in 2019 alone 

consequently being the most burdened by hepatitis B infection in the world (WHO, 2021). The 

Ugandan Ministry of Health estimated the prevalence of chronic hepatitis B infection to be 4.1% 

however it differs from region to region with the highest number of cases being detected in the north 

and the lowest in the Southwestern region (Ministry of Health, 2019). 

 

2.2 Hepatitis B symptomatology and mode of transmission 

The symptoms of hepatitis B comprise loss of appetite, malaise, nausea, diarrhea, fever, jaundice, 

dark-colored urine, abdominal discomfort, and chronic liver inflammation which may result into liver 

scarring or cirrhosis and liver cancer and death (WHO, 2022a). Hepatitis B is transmitted through 

parenteral contact with infected body fluids such as saliva, cerebrospinal fluid, contaminated blood or 

blood products (serum and plasma), through the use of contaminated instruments for invasive 

products, and also by sexual contact (WHO, 2022a). Hepatitis B has also been reported to spread 

vertically at birth from mother to baby (Cheung & Lao, 2020) and horizontally through exposure to 
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bleeding wounds and sweat (Takata et al., 2020). 

 

2.3 Hepatitis B genome, replication, pathogenesis, and diagnosis 

Hepatitis B has a covalently closed circular DNA (ccc DNA) in its nucleus, it codes for pre-genomic 

RNA (pgRNA) that gets enclosed in a capsid with the aid of hepatitis B virus polymerase (Shih, 

Yang, Choijilsuren, Chang, & Liou, 2018). Replication of hepatitis B virus by reverse transcription 

takes place in the capsids where pgRNA is used as a template for stranded linear and then partially 

double-stranded relaxed circular (rc) DNA synthesis. Hepatitis B virus infection persists mainly due 

to ccc DNA and the liver’s immune tolerance to hepatitis B virus antigens (Shih et al., 2018). 

Figure 2: Replication cycle and natural history of infection and pathogenesis of hepatitis B 

 

Adapted from (Shih et al., 2018). 

Figure 2: Illustration of hepatitis B virus replication by reverse transcription. It takes place in the 

capsids to generate double-stranded relaxed circular DNA (rcDNA) and single-stranded DNA 

(ssDNA) from pgRNA. Capsids containing a mature rc DNA genome target the nucleus for ccc DNA 

synthesis. 

 

The genome of the virus contains 4 open reading frames that code for the viral polymerase, Hepatitis 

B core and envelope antigens, the regulatory protein HBx and the preS/S gene which codes for three 

surface antigens (LHBs, MHBs, and SHBs) (Schadler & Hildt, 2009). Hepatitis B surface antigen is an 
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envelope protein and is one of the markers for Hepatitis B virus infection (WHO, 2022b). It can be 

used to test for hepatitis B since it is usually produced excessively and can be detected in blood of 

individuals with acute and chronic hepatitis B infection (WHO, 2022b). 

 

A given number of host factors have been reported to affect hepatitis B disease progression such as 

age, sex, alcohol intake, coinfection with human immunodeficiency virus (HIV) and hepatitis C virus 

(HCV), and other comorbidities such as diabetes and hypertension (Pisano et al., 2021). Previous 

studies have revealed that the course of infection is highly linked to the age at which the patient 

acquires the infection with mostly younger individuals more likely to get chronic infection (Z. Li, Hou, 

& Cao, 2015). Furthermore, studies on the impact of increased alcohol intake, the presence of 

coinfection with HIV and HCV, hepatitis D virus (HDV), and other comorbidities such as diabetes 

and hypertension and the male gender on hepatitis B disease progression revealed a worsened disease 

progression to end-stage liver disease (Ganesan, Eikenberry, Poluektova, Kharbanda, & Osna, 2020; 

Iida-Ueno, Enomoto, Tamori, & Kawada, 2017; Loomba et al., 2013; Ruggieri, Gagliardi, & 

Anticoli, 2018; Sagnelli et al., 2012). 

 

2.4 Applications of genome-wide association studies in genetic studies. 

Genome-wide association studies are used to test for association between several thousands of SNPs 

and disease among a population of individuals and have been used to gain a deeper understanding of 

the genetics of complex diseases (Hardy & Singleton, 2009). Completion of the  human genome 

project led to advances in technology which made it possible to use GWAS to detect genetic markers 

and study genetic variations across the genome that are associated to disease traits and complex 

diseases (Qiu et al., 2017). Genome-wide association studies have mostly been used to detect genetic 

associations for complex diseases, defined as those diseases that are influenced by both an 

individual’s genes and the environment such as diabetes (Scott et al., 2007). Genome-wide association 

studies were originally more inclined to investigate genetic variants in complex diseases but are now 

expanding into infectious diseases (Mozzi et al., 2018). 

Genome-wide association studies in infectious diseases such as human immunodeficiency 

virus/acquired immunodeficiency syndrome (HIV/AIDS), malaria and tuberculosis have previously 

identified genetic markers that can be used to explain host protective  mechanisms against pathogens 

and find novel diagnostic, prophylactic, and therapeutic molecular targets for interventions (Mboowa, 

Sserwadda, Amujal, & Namatovu, 2018). 
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Genome-wide association tests are performed using software that incorporates statistical models that 

may be linear, logistic or mixed models. A good number of software are available for use such as the 

Genome-wide Efficient Mixed model analysis software (GEMMA) (Zhou & Stephens, 2012) and 

Regenie (Mbatchou et al., 2021). These generate summary statistics that include a list of loci/SNPs, 

their chromosomal position and a p-value representing the statistical significance of the association 

test used. Manhattan plots and quantile-quantile plots are then used to interpret the significance of  the 

association. Manhattan plots can be described as plots of the log10(p- value) of the statistical frequentist 

test used which can either be Wald’s test, Likelihood ratio and score on the y-axis against the 

chromosomal position of the SNP on the x-axis (Turner, 2018). Quantile-quantile plots are best 

described as scatter plots of observable association p-value for all  SNPs against the expected uniform 

distribution of p-values under the null hypothesis of no association and are used to detect the existence 

of population structure (Turner, 2018). 

 

2.4.1 Genome-wide association studies of Hepatitis B 

Genetic determinants such as allelic differences in the human leukocyte antigen (HLA), toll-like 

receptors, and cytokine genes have been studied in multiple ethnic populations to explain differential 

susceptibility to hepatitis B infection (J. Xu et al., 2021). In a study focusing on clarifying the effect of 

the HLA-DP/DQ gene on hepatitis B infection susceptibility in different nationalities, the HLA-DQ 

rs9272346 and 3 HLA-DP SNPs rs9277471, rs9277542 and rs9277535 were studied. This study’s 

findings pointed to an association between HLA-DP rs9277535 and chronic Hepatitis B risk in the Han 

Chinese, another of HLA-DP rs9277471 and HLA-DP rs9277542 and decreased risk of hepatitis B 

and HLA-DQ rs9272346 was found to be associated with decreased risk of hepatitis B infection in 

the Han Chinese and Uygur populations (Xiang et al., 2016). A study investigating the effect of 

mitochondrial genetic variations among different nationalities of Chinese revealed differential 

susceptibility to hepatitis B infection (HBI), it noted that the mitochondrial DNA haplogroup F 

conferred susceptibility to HBI among the Yi nationality from Lijiang, China (Z. N. Chen et al., 

2022). Cytokine genes produced by immune cells in the body are involved in the mediation of non-

cytolytic virus clearance by targeting several steps in the hepatitis B virus lifecycle (Xia & Protzer, 

2017). A given number of studies identified cytokines such as Interleukins (IL-1B, IL-4, IL-6, IL- 10, 

IL-10RB, IL-12A, IL-12B, IL-16, IL-18, IL-21, IL-21R) and interferons (IFN-ɣ, IFN- ɣR, IFN-AR2, 

IFN-LR1) to be associated with susceptibility of humans to hepatitis B infection (J. Xu et al., 2021). 
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However, most of these studies were conducted in non-African populations and focused more on 

either the HLA region, cytokine genes, and toll like receptors and left out other regions of the genome 

that might be associated with hepatitis B infection. A study carried out among European-American 

(n=320) and African-American (n=85) individuals identified SNP rs9277534 HLA-DPB1 to be 

associated with hepatitis B infection in African-Americans (Thomas et al., 2012) even with a small 

proportion of African-Americans included. This limited inclusion of Africans into these studies with 

no such study carried out in continental Africans leaves a gap in knowledge regarding the 

susceptibility loci associated with hepatitis B infection among them. 

 

A study focusing on finding loci associated with hepatitis B surface antigen sero-clearance in chronic 

hepatitis B infection identified three novel susceptibility loci; rs7944135 on chromosome 11 

(11q12.1), rs171941 on chromosome 5 (5q14.1) and rs6462008 on chromosome 7 (7p15.2) (Kim et 

al., 2018). These SNPs mapped to genes MPEG1, MTX3, HOXA13, CSCL23, and DTX4 that were 

found to be of functional significance after functional analysis (Kim et al., 2018). Another study 

identified HLA-C and UBE2L3 to be associated with chronic hepatitis B infection among Han 

Chinese   (Hu et al., 2013). Findings from a GWAS investigating genetic determinants of persistent 

hepatitis B infection among Chinese revealed an association at a novel locus 8p21.3, rs7000921 and 

differential expression of INTS10 gene which was reported to suppress viral replication via IRF3 in 

liver cells and highlighted to aid clearance of hepatitis B infection (Y. Li et al., 2016). However, most 

of these mentioned studies on hepatitis B infection have focused on finding genetic determinants of 

chronic hepatitis B infection and viral clearance of the infection and left out hepatitis B infection 

susceptibility as a trait.  

 

2.4.2 Contribution of African genome diversity to genetic studies 

Genetic diversity among populations evidenced by nucleotide sequence differences among 

individuals enables populations to adapt to their environment whereby a higher genetic diversity 

allows for higher acquisition of adaptive characteristics suitable for the environment (Rafael & 

Magnolia, 2021). Africa has been described as the origin of modern humans and Africans have been 

reported to have high genomic diversity as compared to other populations or individuals with other 

ethnicities (Tishkoff et al., 2009). This is mainly driven by the diet of Africans, their demographic 

history and exposure to diseases which resulted into alteration of their genotypes and phenotypes 

(Tishkoff et al., 2009). In addition to high genetic diversity, African populations are distinguished by 

considerable and large population structure and reduced linkage disequilibrium (LD) which may be 
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justified by their exposure to infectious diseases and response to diverse climate (Tishkoff et al., 

2009). African populations have been deemed relevant and highly important for inclusion in genetic 

studies due to their differences in distribution of allelic frequencies as compared to non-African 

populations (Peprah, Xu, Tekola-Ayele, & Royal, 2015). However, only a few African populations 

have been included in GWAS with a representation of approximately 1.1% of the records available 

in the GWAS catalog (Fatumo, Chikowore, et al., 2022). Additionally, the poor transferability of 

genetic findings derived from the highly studied European populations into diverse populations such 

as Africa has been noted and explained by the population specific differences (Kamiza, Toure, et al., 

2022). Uganda is very rich in ethnic, linguistic, and cultural diversity (Fatumo, Mugisha, et al., 2022) 

and therefore investigating such a population is a unique and unmatched chance to comprehend the 

genetic structure of Ugandans. This reinforces the need to gain a deeper understanding of the impact 

of host genetics in phenotypic adaptation and disease susceptibility in African populations like 

Uganda. The inclusion of African populations will reduce the reliance on transfer of findings in 

precision medicine from non-African populations to African populations (Pereira, Mutesa, Tindana, 

& Ramsay, 2021). 

2.5 Fine mapping in genetic studies. 

Fine mapping is a statistical approach to identifying and prioritizing genetic variants that are most 

likely to causally influence a trait by analyzing genomic loci associated with that trait (Schaid et al., 

2018). Fine mapping aims at finding the specific causal variant that is responsible for a given 

association with a trait since associations identified by genome-wide associations can be indirect 

because the tagged SNP could merely be associated with the actual causal SNP (Schaid et al., 2018). 

There are a number of fine mapping strategies such as heuristic (impractical and out of use), penalized 

regression models, and Bayesian methods (designed particularly for fine mapping and preferred over 

all other methods (Schaid et al., 2018). Bayesian method uses a Bayes factor to measure the evidence 

for association at a SNP where SNPs with bigger values of the Bayes factor were considered to be 

having stronger evidence for association (Frangou, 2013; Stephens & Balding, 2009). The Bayes factor was 

used to calculate the posterior probability for each SNP which was then used to make a comparison 

between SNPs within and across regions (Wellcome Trust Case Control et al., 2012). The posterior 

probability is the probability of the genotype configuration at a SNP in cases and controls under the 

alternative hypothesis divided by the probability of the genotype configuration at that SNP in cases 

and controls under the null hypothesis. The null hypothesis states that disease status is independent 

of the genotype at a particular SNP (Wellcome Trust Case Control et al., 2012). 
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2.6 Replication of genetic association findings 

Replication of association findings assures researchers that the associations identified between the 

genotype and a given phenotype in a GWAS are acceptable and reliable and not due to chance or 

artifact brought about by uncontrolled bias (Kraft, Zeggini, & Ioannidis, 2009). Replication and 

reproducibility of association findings aid progressive science that allows for continued knowledge 

accumulation (Plomin, DeFries, Knopik, & Neiderhiser, 2016). Replication of initially reported 

results is a very credible method of verification of scientific discoveries and its success provides 

evidence of true positive status of the findings (Marigorta et al., 2018). A successful replication of a 

genetic marker would mean that it was found to be associated with that same trait/phenotype in an 

independent cohort (Kraft et al., 2009). Additionally, successful replication can also be demonstrated 

when the genetic marker is not significant in the independent cohort but has the same direction of 

effect as noted in the initial findings observed (Marigorta et al., 2018). Several other methods such 

as indirect replication where presence of positive association at variants in high LD with the genetic 

marker identified initially are also used as confirmation of replication (Marigorta et al., 2018). 

However, depending on the statistical significance threshold set for association in the independent 

cohort, a p < 0.05 may show replication and the genome-wide significance threshold (p<5x10-8) is 

evidence of rediscovery of the genetic marker in the independent cohort (Marigorta et al., 2018). The 

simplest way of performing replication is by searching for the identified genetic markers in initial 

results in the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/) (Marigorta et al., 2018). 

The NCI-NHGRI working group on Replication in association studies suggested some criteria for 

establishing positive replication which emphasized that replication studies had to be done in 

independent datasets with sufficient sample size and analyzing same or very similar traits of interest 

in a similar population (Chanock et al., 2007). Additionally, similar magnitude and direction of effect 

had to be achieved for the same SNP or with SNPs in very high LD with the SNP identified in the 

discovery dataset (Chanock et al., 2007).  However, failure of replication in highly powered 

independent follow-up studies may not necessarily invalidate associations obtained since this could 

also be driven by LD and effect size differences across the different studies (Kraft et al., 2009).  

2.7 Mendelian Randomization for causal inference 

Mendelian randomization (MR) is a valuable method used to determine the causality of an association 

noted between a modifiable risk factor (exposure) and a clinically suitable outcome (Sekula, Del 

Greco, Pattaro, & Kottgen, 2016). Possible modifiable risk factors or exposures studied could be 
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effects of the environment, drug treatments, behavioral and other factors on human biology (Birney, 

2022). Mendelian randomization uses genetic instruments (SNPs significantly associated with the 

tested exposure) as instrumental variables to deduce whether that exposure causes a given health or 

disease outcome (Bowden & Holmes, 2019). It is advantageous over randomized control trials 

because it is not prone to reverse causation bias, potential confounding and can be an alternative if 

randomized control trials are not feasible (Sekula et al., 2016). Additionally, the broad accessibility 

of published genetic associations provides instrument variables as the required input for MR studies 

hence making the approach more cost-effective and time efficient for use in determining the causal 

effects of exposures on outcomes (Sekula et al., 2016). Mendelian randomization leverages the fact 

that genetic variation is random at conception due to the random inheritance of random alleles from 

each parent thereby allowing the use of these variants to explain the possible causes of outcomes 

noted (Birney, 2022). Mendelian randomization enables the unbiased identification and estimation of 

the magnitude of causal effects by addressing the confounding problem (unobservable or unknown 

factors influencing the association between exposure and outcome (Davey Smith & Hemani, 2014).  

The accuracy of MR studies is based on three assumptions that must be carefully assessed and clearly 

interpreted before making a plausible causal inference (Lee, 2022). In a standard MR instance where 

trait A is hypothesized to cause trait B, the assumptions would be 1) the identified genetic 

instrumental variables should be robustly associated with trait A, 2) the genetic instrumental variable 

is not associated with the outcome except through the exposure and 3): the instrumental variable is 

not related to unmeasured or measured confounding factors (Davey Smith & Hemani, 2014). Several 

approaches are used to perform MR such as one sample MR which uses individual-level data from 

the same population to infer causality, two sample MR that requires GWAS results from two distinct 

sample populations of preferably the same ancestry, and bidirectional MR that assesses both 

directions of causation while assessing the causal effect (Burgess et al., 2019). Implementation of 

Mendelian randomization analysis in R can be done using methods such as inverse variance weighted, 

the most efficient method for meta-analysis, and others such as weighted median, simple median, 

weighted mode, and MR-EGGER for sensitivity analysis (Burgess et al., 2019). 
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Figure 3: Schematic representation of Mendelian randomization 

 

Adapted from (Davey Smith & Hemani, 2014) 

Figure 3: Mendelian randomization can be used to determine whether trait A has a causal effect on 

trait B given that the 3 assumptions; (1), (2) and (3) are fully met given that ZA is a valid 

instrument. ZA (1) is associated with trait A, (2) is not associated with trait B except through trait A 

and is not related to any confounders. 

2.7.1 Application of Mendelian randomization in Hepatitis B  

Two sample MR has previously been used to investigate the causal effect of chronic hepatitis B 

(CHB) infection on extrahepatic cancers and it revealed that CHB was causally associated with 

cervical and gastric cancers and also confirmed previous reports on its association with hepatocellular 

carcinomas among East Asians (Kamiza, Fatumo, Singini, Yeh, & Chikowore, 2022). Another study 

investigated the causal association between CHB and Coronavirus disease 2019 (COVID-19) in East 

Asians and revealed that CHB increased susceptibility and severity of COVID-19 among these 

individuals (Liu et al., 2023). However, these studies have been carried out in East Asian populations 

which leaves a gap in the application of the Mendelian randomization approach for causal inference 

of hepatitis B and possible outcomes among individuals of African ancestry. Additionally, Mendelian 

randomization seems less applied in hepatitis B genetic studies as noted in a PubMed database search 

with key terms Mendelian Randomization and Hepatitis B in August 2023 having revealed only 5 

results. 

2.7.2 Hepatitis B infection and liver function biomarkers  

Liver function biomarkers are enzymes and proteins produced by the liver whereby the deviation of 

their levels from the expected normal range indicates different diseases and some include ALT, AST, 
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bilirubin, albumin, alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) 

(ClevelandClinic, 2023). Some of the risk factors of the elevation of liver enzymes include hepatitis 

infection and exposure, alcohol use, certain medications and diabetes (ClevelandClinic, 2023).  Acute 

and chronic liver infection with progression into liver cirrhosis are known effects of hepatitis B 

infection and elevated serum alanine transferase levels have previously been used to define acute 

hepatitis B infection (Wilkins et al., 2019).  Elevation of AST and ALT levels is regarded as clinically 

significant during the natural history and treatment of CHB (Vaillant, 2021).  
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CHAPTER THREE: METHODOLOGY 

 

3.1 Study design and setting 

 

The research was a case control study investigating the host genetic determinants influencing 

differential susceptibility to viral hepatitis B among the GPC in southwestern Uganda. This study 

was nested in a primary study entitled “The epidemiology and genetics of communicable and non-

communicable diseases in the general population cohort in Kyamulibwa, Uganda. The primary study 

recruited participants into the general population cohort and obtained samples and participant 

demographics which were used to generate the Uganda genome resource. Genotype and phenotype 

data used in this particular study was obtained from the Uganda genome resource.  

Figure 4: Overall methodology workflow 

Figure 4: Samples were obtained from individuals recruited in the GPC, 5000 genotyped, 2000 

sequenced using Whole Genome Sequencing and all tested for HBV, HCV and HIV. The samples 

and SNPs obtained were taken through a quality control step in PLINK software using parameters 

such as sex discrepancy, sample and SNP missingness, heterozygosity rate, Hardy Weinberg 

Equilibrium (HWE) and minor allele frequency (MAF). The Uganda Genome Resource (UGR) 

comprises of samples and SNPs that passed the quality control criteria thresholds. UGR genotype 

and phenotype data was used as input to test for association and results analyzed to interpret 

summary statistics obtained and subsequent post GWAS analysis such as fine mapping, replication 
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and Mendelian randomization. 

3.1.1 GPC study participants 

The General Population Cohort is a population based open cohort of about 22,000 individuals from 25 

neighboring villages in Kyamulibwa sub county in Kalungu district in Southwestern Uganda (Asiki 

et al., 2013). The population is distributed across these villages which are marked by administrative 

boundaries with a few of the individuals concentrated in the small trading centers (Asiki et al., 2013). 

The cohort has been in existence since 1989 and was established by the Medical Research Council, 

United Kingdom in partnership with the Uganda Virus Research Institute, an umbrella organization 

under the country’s Health Ministry (Asiki et al., 2013). The main aim of its establishment was to 

evaluate incidence and prevalence trends of HIV infection and their determinants in rural 

southwestern Uganda (Asiki et al., 2013). Genetic studies with the aim of providing insights into 

genetic variation in communicable and non-communicable diseases were introduced in 2010 and have 

since been used to reveal genetic determinants of diseases such as Diabetes, Chronic Kidney disease 

among participants in this cohort (Asiki et al., 2013). The study population is recruited using house-

to-house census rounds conducted annually during which study participants for the medical surveys 

are picked. The cohort is active and dynamic evidenced by new births, deaths and migrations in an 

out of the population noted and recorded on every round of follow up (Asiki et al., 2013). During 

survey round 22 conducted between 2010 and 2011, most attention was directed to genetics and 

epidemiology of communicable and non-communicable diseases (Fatumo, Mugisha, et al., 2022). 

Participant details of medical, sociodemographic and geographic factors were recorded, and 

participants assessed for major modifiable cardio-metabolic risk factors and infectious disease bio-

markers such as Hepatitis B and Hepatitis C (Asiki et al., 2013). 

 

3.1.2 Data collection 

Anthropometric measurements such as body mass index and blood samples for Hepatitis B and 

Hepatitis C testing were collected by well trained nurses while using fully calibrated equipment and 

following stipulated standard operating procedures (Kalyesubula et al., 2018). Written informed 

consent on use of participant clinical record for research and sample storage for future use was 

obtained from the participants (Asiki et al., 2013). 
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3.1.3 Laboratory tests 

Blood serum samples (8.5mls) for serological and biochemical analysis were collected in serum 

separation vacutainer tubes. The serum separation vacutainer tubes were centrifuged at 1000- 13,000 

G for 10 minutes and kept at a fridge temperature of 4 - 8°C at the field station laboratory. Laboratory 

blood tests performed included HIV, HBV, and HCV testing. Human immunodeficiency virus (HIV) 

testing was done following the approved national algorithm using Determine, Statpak, and SD Bioline 

test kits. Hepatitis B and C virus testing was done using hepatitis B surface antigen and HCV antibody 

tests respectively on the Cobas e 601 Auto Analyzer (Roche Diagnostics, North America) 

(Kalyesubula et al., 2018). All tests were carried out at the MRC/UVRI Entebbe laboratory 

(Kalyesubula et al., 2018). 

 

3.1.4 The Uganda Genome Resource (UGR) 

The Uganda Genome Resource (UGR) is an active distinguished and well-described genomic 

database that contains a wide spectrum of phenotypes ranging from communicable and non-

communicable diseases and risk factors (Fatumo, Mugisha, et al., 2022). The UGR was obtained from 

5,000 genotyped, 2,000 sequenced, and 342 overlapping (sequenced and genotyped) individuals from 

nine ethnolinguistic groups in the GPC (Gurdasani, Carstensen, et al., 2019). Details of steps taken during 

DNA extraction, genotyping, sequencing, quality control, imputation, and merging of UGR quality-

controlled genotype and sequence data to generate a resource consisting of 6,407 individuals are well 

described in these publications (Fatumo, Mugisha, et al., 2022; Gurdasani, Carstensen, et al., 2019). The 

6,407 individuals are a combination of 4,429 individuals with genotype, and 1,978 individuals with 

sequence data (Gurdasani, Carstensen, et al., 2019). 

 

3.1.5 Phenotype definition 

A phenotype is an observable characteristic exhibited in an individual or organism due to their 

genotype’s interaction with the environment (Britannica, 2023). For this study, our phenotype 

(outcome) of interest was hepatitis B infection susceptibility which was defined by hepatitis B surface 

antigen status. In case control studies, an individual with the outcome of interest is termed as a case 

while a control does not have the outcome of interest (Tenny, Kerndt, & Hoffman, 2023). 
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3.1.5.1 Case definition 

Participants with confirmed positive tests for hepatitis B surface antigen were classified as hepatitis 

B cases. These participants with positive hepatitis B surface antigen tests were considered to have 

been actively infected with Hepatitis B at the time of testing. 

 

3.1.5.2 Control definition 

Participants with a negative hepatitis B surface antigen test were classified as controls. 

 

3.1.6 Inclusion and exclusion criteria 

Inclusion criteria: Since this was using data from a primary study, all individuals and SNPs in the 

UGR were included in the study. 

Exclusion criteria: SNPs that had a minor allele frequency of less than 0.01 and violated the 

Hardy-Weinberg equilibrium principle were excluded from the run in GEMMA for association 

testing. 

3.1.7 Ethical Considerations 

Written informed consent to undergo study procedures, use of participant clinical records for research 

purposes, and use of their samples for future genetic studies was obtained from participants in the 

GPC before all study procedures were conducted on every medical survey/round (provide the ref 

number here Appendix I). Study procedures included interviews (HIV risk questionnaire, sexual 

behavior, medical history), blood tests, and sample storage for future use. These all followed the 

guidelines set by the Uganda National Council of Science and Technology (UNCST) (Asiki et al., 

2013). 

The parent study titled Epidemiology and genetics of communicable and non-communicable diseases 

in the General Population Cohort in Kyamulibwa, Uganda obtained ethical approval from the Uganda 

Virus Research Institute Science and Ethics Committee, UVRISEC (Appendix II) and the Uganda 

National Council of Science and Technology, UNCST (Appendix III). Ethical approval and a waiver 

of informed consent for this study with reference number SBS-2023-298 were obtained from the 

School of Biomedical Sciences Research Ethics Committee (SBSREC) for a period of 24/04/2023 to 

24/04/2024 (Appendix IV). 
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3.3 Data management and analysis 

 

3.3.1 Data preprocessing for GWAS 

3.3.1.1 Phenotype data 

An Excel file containing participant demographics including age, sex and body mass index was 

merged with another Excel file containing participant results for hepatitis B, HCV and HIV results. 

The merged Excel file with all complete participant information was imported into R and all 

participant results were coded as 0 for negative results and 1 for positive results whereas participant 

sex coded as 1 for males and 2 for females as required by the GEMMA software. 

A phenotype file for hepatitis B infection susceptibility was prepared and it included one column 

where each line was a phenotype value of either 0s or 1s depending on each individual’s hepatitis B 

result obtained. The phenotype file was prepared in the same order of individuals as the mean 

genotype file with the same number of rows as the number of individuals in the mean genotype file. 

A covariate file was prepared, and it included participant age, sex, HCV, and HIV results for all 

participants ordered in the same way as the phenotype file. The first column of the covariate file 

comprised a column of 1s as an intercept as expected by the GEMMA software. Missing phenotype 

or covariate information was coded as N/A. 

 

3.3.1.2 Genotype data 

Genotype data included a mean genotype file in BIMBAM format, a SNP annotation file, and a 

relatedness matrix. These files contained genotype information for chromosomes 1 to 22. 

3.3.1.2.1 Mean genotype file 

This file contained genotype information with the first column having the SNP identifier, the second 

column having the minor allele, the third column having the major allele and the remaining columns 

contained the posterior/imputed mean genotypes numbered between 0 and 2 for all the 6407 

individuals. The data contained one mean genotype file for each of the 22 autosomal chromosomes. 

3.3.1.2.2 SNP Annotation file 

This file contained SNP information with the first column having the SNP identifier, the second 

column having its base pair position, and the third column having its chromosome number. This was 

required to ensure the SNP information columns in the output file for the association test generated 

by GEMMA did not have “-9” which denotes missing values. 
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3.3.1.2.3 Genotype Relatedness Matrix 

The relatedness matrix contained information on the relatedness between given two individuals as 

required by the linear mixed model software provided by GEMMA. It was an n x n matrix where 

each row and each column corresponded to individuals in the same order as in the mean genotype 

file. In the matrix, the ith row and jth column was a number indicating the relatedness value between 

the ith and jth individuals. This was important such that the linear model can account for population 

stratification and sample structure. 

 

3.3.2 Analysis of genome-wide association study data 

Figure 5: Method workflow for the analysis of the GWAS data 

 

Figure 5:The GWAS of hepatitis B infection susceptibility was done in GEMMA software using  

phenotype, covariate, mean genotype, SNP annotation files and genotype related matrices as input 

files. GWAS summary statistics generated were uploaded to FUMA for generation, visualization 

and interpretation of results. Functional and tissue expression analysis was done on SNP and genes 

identified as associated with hepatitis B infection susceptibility. 

3.3.2.1 Genome-wide association analysis of hepatitis B infection susceptibility 

Genome-wide association study analysis was done to detect any genetic loci that could be associated 

with differential susceptibility to hepatitis B infection using Genome wide Efficient Mixed Model 
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Association Analysis (GEMMA) version 0.98.3 software (Zhou & Stephens, 2012). The GEMMA 

software uses applies the genome-wide Efficient Mixed Model Association algorithm for standard 

linear mixed models (Zhou & Stephens, 2012) GEMMA is fast, properly accounts for population 

stratification and relatedness, efficient and is a more computationally practical method for performing 

exact genome-wide association analysis for many individuals (Zhou & Stephens, 2012). 

GWAS was performed for each chromosome using a linear mixed model while adjusting for age, sex, 

HCV, and HIV in GEMMA on the Uganda Medical Informatics Centre (UMIC) server. The model 

was set to exclude SNPs with a minor allele frequency of less than 1%. The likelihood ratio test was 

used as the frequentist test statistic. 

Each run per chromosome generated two output files, one was a log text file that contained detailed 

information about the running parameters and the computational time used while the other was an 

association text file that contained the results. Columns in the association file included the 

chromosome number, SNP ID, base pair positions on the chromosome, number of missing values for 

a given SNP, minor allele, major allele, allele frequency, beta estimates, standard errors for the beta, 

restricted maximum likelihood estimates for lambda and p-values from the likelihood ratio test. 

All the 22 association files containing summary statistics obtained for each chromosome were merged 

to make one complete file starting from chromosomes 1 to 22. The association file obtained was used 

for statistical analysis, post-analytical visualization, and interpretation of GWAS data. 

 

3.3.2.2 Statistical Analysis 

Visualization, interpretation, functional mapping and annotation of the generated summary statistics 

was done using Functional Mapping and Annotation of genome-wide Association Studies (FUMA 

GWAS). FUMA is an integrative web-based software that has two functions i) the SNP2GENE 

function that uses summary statistics to provide comprehensive functional annotation for all SNPs in 

genomic areas identified by lead SNPs and ii) the GENE2FUNC function that uses a list of gene IDs 

identified by the SNP2GENE function to provide their biological function (Watanabe, Taskesen, van 

Bochoven, & Posthuma, 2017; Watanabe, Umicevic Mirkov, de Leeuw, van den Heuvel, & 

Posthuma, 2019). 

 

3.3.2.2.1 SNP2GENE 

This is the main function of FUMA which takes GWAS summary statistics as input and mainly 

characterizes significant SNPs at a genome-wide significance threshold of 5 x 10-8 and performs 
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genome-wide analyses such as Multi-Marker Analysis of Genomic annotation (MAGMA) gene and 

gene set analysis. The SNPs in GWAS summary statistics uploaded were annotated with their 

biological function and gene mapped basing on positional, eQTL, and chromatin interaction 

information of SNPs. FUMA did this in two steps, first by characterizing independent significant 

SNPs and their surrounding genomic loci based on LD structure, identifying lead SNPs and genomic 

risk loci. Secondly, Independent significant SNPs and other SNPs in LD with the independent 

significant SNPs were    annotated for functional consequences such as i) gene functions (based on 

Ensembl genes (build 85) using ANNOVAR), ii) deleteriousness score (based on combined 

annotation dependent depletion, CADD score), iii) potential regulatory functions (based on 

RegulomeDB score and 15-core chromatin state predicted by ChromHMM for 127 tissue/cell types), 

iv) effects on gene expression using eQTLs of various tissue types and 3D structure of chromatin 

interactions with Hi-C data. Lastly, functionally annotated SNPs were subsequently mapped to genes 

based on functional consequences on genes based on their physical position on the genome, eQTL 

associations, and 3D chromatin interactions. Independent significant SNPs and correlated SNPs were 

also linked to the GWAS catalog to find previously reported associations of the SNPs in these risk 

loci with a variety of other phenotypes. Manhattan, quantile-quantile (qq), regional, and MAGMA 

tissue expression plots and interactive tables were generated by FUMA for interpretation and 

visualization. 

 

3.3.2.2.2 GENE2FUNC 

This function was used to understand the putative biological mechanisms of prioritized genes by 

annotating these genes in biological context. FUMA does this by analyzing the biological 

information for each prioritized gene to find previous associations with any diseases as well as drug 

targets by mapping OMIM ID and Drug Bank ID. Patterns of tissue specific expression based on 

GTEx v6 RNA-seq data for each gene were visualized in an interactive heat map. FUMA was used 

to identify tissue specificity of prioritized genes for both single gene level analysis and 

overrepresentation in sets of differentially expressed genes (DEG; sets of genes which       are more (or 

less) expressed in a specific tissue compared to other tissue types) for each of 53 tissue types based 

on GTEx v6 RNA-seq data. 

 

FUMA also tested for the enrichment of prioritized genes in biological pathways and functional 

classes using the hypergeometric test against gene sets obtained from MsigDB and WikiPathways. 

Results from this analysis included an overview of the shared biological functions of prioritized genes 
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represented in a gene expression heat map, and text files showing enrichment of differentially 

expressed genes, overrepresentation of gene sets, and links to external biological information of input 

genes. 

 

3.3.3 Fine mapping for localization of causal variants 

 

Fine mapping was done in R/Rstudio version 4.2.1 using the Bayesian method. It was done to pinpoint 

individual variants that have an effect on the hepatitis B infection susceptibility among the SNPs 

whose p-value was below 5 x 10-8. In this step, specific causal variants were characterized and identified 

from the significant genomic loci. Bayesian approach of fine mapping was the method of choice 

because it had previously been reported to have fewer false positives and giving better fine mapping 

performance when compared to other fine mapping strategies such as the simple method based on R 

square (van de Bunt et al., 2015). 

3.3.3.1 Procedure 

i) All significant SNPs (SNPs with a likelihood ratio test p-value of less than 5 x 10-8) were 

selected from the summary statistics using awk in the Linux command line. 

ii) Significant SNPs were clumped to remove SNPs with high LD with the lead SNPs to generate 

a list of independent SNPs only. In this step, only the most significant SNPs (lowest p-value) 

in each LD block were identified for use in further analysis. The clumping threshold excluded 

SNPs with an r2 value greater than 0.1 while using an in-sample LD and within 500kb of each 

other. 

iii) Z scores were calculated for all the SNPs in the association summary statistics by dividing 

their beta estimates by the corresponding standard error. 

iv) The Bayes factor for each SNP in the summary statistics was calculated using the calculated 

z score using the formula below. 

  where k is the number of studies, in this case k was 1, BFi is 

the   Bayes factor and Zi is the z score. 

v) For each of the SNPs in the list of independent SNPs, SNPs that were 500000 base pair 

positions before and after that particular SNP were filtered and their posterior probabilities 

calculated. SNPs found to be with the highest posterior probability were considered to be 
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more likely to be the causal variant of the association at that locus. 

vi) Posterior probabilities of each of these SNPs were computed using the Bayes factor as in the 

formula below: 

 

 

Where I, is the posterior probability, BFi is the Bayes factor for SNPi (given SNP in the list of 

independent SNPs) and BFj represents the Bayes factor of SNPs 500000 base pair positions before 

or after the given SNP in the region/locus. Therefore, the summation in the denominator defines the 

overall SNPs at the locus. 

vii) The SNPs at that given locus were then sorted and arranged all the SNPs based on their 

posterior probability at the locus in descending order. 

viii) The 99% credible set size was derived by counting the number of SNPs required to attain 

a cumulative posterior probability that is greater than or equal to 0.99. 

ix) The SNPs with the smallest 99% credible set size were considered to be specifically causal 

and driving the association in that locus. 

 

3.3.4 Replication of genetic association findings. 

 

Replication of findings was performed by downloading summary statistics of publicly available 

datasets from the GWAS catalog (https://www.ebi.ac.uk/gwas/). Due to the unavailability of publicly 

available summary statistics for download on the GWAS catalog for studies carried out among 

individuals of African ancestry looking at the same trait as our study. The summary statistics used 

were from two GWAS conducted among individuals of European ancestry in studies whose trait of 

interest was Hepatitis B virus surface antigen positivity. One (GCST90012669) was a clinical 

laboratory test-wide association scan aiming to find relationships between genetic risk and complex 

disease & physiological measurements (Dennis et al., 2021). This study’s GWAS was performed 

using a linear model in fastGWA software among 2,255 European ancestry individuals (Dennis et 

al., 2021). The other study (GCST006356) aimed at evaluating the impact of genetic, environmental, 

and intrinsic factors such as age and sex on differential humoral responses to common disease 

pathogens and vaccines (Scepanovic et al., 2018). This GWAS study was conducted among 1000 

French individuals recruited in the Milieu Intérieur cohort using logistic regression in PLINK 

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/studies/GCST90012669
https://www.ebi.ac.uk/gwas/studies/GCST006356
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software (Scepanovic et al., 2018). 

 

3.3.4.1 Procedure for replication 

i) Significant SNPs obtained in the GWAS done in 3.3.2 above were searched for in the summary 

statistics of the downloaded data from the GWAS catalog for a GWAS of accession IDs 

GCST90012669 and GCST006356. 

ii) The SNPs found in both were compared to check for consistency in the direction of effect by 

looking at beta values obtained and significance by looking at p-values obtained. 

iii) A SNP with the same direction of effect as seen in the beta value and a p-value <= 0.05 was 

considered significant and replication was a success. 

 

3.3.5 Mendelian randomization 

Determination of the causal effects of hepatitis B infection susceptibility on liver function 

biomarkers of ALT and AST was done using MR. 

Figure 6: Schematic representation of the MR 

 

Figure 6: A Mendelian randomization study to test the causal effect of Hepatitis B infection 

susceptibility on serum levels of liver function biomarkers AST and ALT provided that assumptions 

1,2 and 3 are adequately met. 1): the SNPs used as instrumental variables are significantly associated 

with the exposure at genome-wide significance threshold of   5 x 10-8, 2): the instrumental variable 

is not associated with outcome except through the exposure and 3): the instrumental variable is not 

related to any confounding  

 

3.3.5.1 Mendelian Randomization flowchart 
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Figure 7: Method workflow for Mendelian Randomization 

 

 

Figure 7: Mendelian randomization to assess the causal effect of hepatitis B infection susceptibility 

(exposure) on liver function biomarkers ALT and AST (outcomes) was performed first by selecting 

and testing the validity of genetic instruments. Estimation of causal effect was done using Mendelian 

randomization and two sample MR packages in R/R studio using Inverse variance weighted, simple 

median, weighted median, and MR-egger methods.  

3.3.5.2 Procedure 

i) Summary statistics obtained in the GWAS done in 3.3.2.1 above were used as the exposure 

(instrumental variable). 

ii) Summary statistics of two independent GWAS among individuals of African ancestry for 

ALT (GCST90013663) and AST (GCST90013664) were downloaded from the GWAS 

catalog https://www.ebi.ac.uk/gwas/  and used as the outcome.  

iii) Two independent MR analyses were performed with hepatitis B infection susceptibility as 

the exposure in both analyses, with ALT and AST serum levels as independent outcomes. 

iv) Significant SNPs (SNPs with a likelihood ratio test p-value of less than 5 x 10-8) selected from 

the full GWAS summary statistics from 3.3.2.1 above were searched for in the summary 

statistics for each of the outcome variables. SNPs found to be in common for both the 

exposure and outcome obtained from each of the outcome variables were selected for 

downstream analysis. 

v) SNPs in the exposure and outcome were imported in R and Mendelian randomization 

https://www.ebi.ac.uk/gwas/studies/GCST90013663
https://www.ebi.ac.uk/gwas/studies/GCST90013664
https://www.ebi.ac.uk/gwas/
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performed in R/Rstudio version 4.2.1 using the MendelianRandomization (Broadbent et al., 

2020) and TwoSampleMR (Hemani et al., 2018) packages.  

vi) Before the MR analysis, SNPs were clumped at a threshold of 500kb window at an r2 of 0.01 

to remove SNPs that were in high LD with the lead SNPs. SNPs were harmonized to ensure 

palindromic SNPs were dealt with before the actual MR analysis was performed.  

vii) MR analysis was done by use of the inverse-variance weighted (IVW) method for meta-

analysis of individual causal effects of SNPs in the exposure on the outcome as the main 

method and simple median, MR-Egger, weighted mode, and weighted median as 

complementary methods.  

viii) Sensitivity analysis such as the MR-Egger method was used to test and account for 

horizontal pleiotropy. Additionally, Cochran’s Q test was performed to detect heterogeneity 

among the instrumental variables. Leave-one-out analysis was also used to test the robustness 

of the results to determine the undue influence of individual SNPs on the MR estimation.  

ix) P-values and Confidence intervals were used to determine statistical significance. Causal 

estimates with a p-value of less than 0.05 were considered significant. 

x) Odds ratio (OR) of less than 1 indicated that the exposure decreased the risk of the outcome 

(protective exposure) while an OR of greater than 1 implied that the exposure increased the 

risk of the outcome. 

xi) Causal estimates obtained were plotted on a forest plot for visualization and interpretation. 
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CHAPTER FOUR: RESULTS 

4.1 Descriptive statistics of phenotype data 

The data included 6407 participants with information on their age, sex, body mass index, hepatitis B, 

hepatitis C, and HIV status. Overall, 57.13% of the participants in this study were female, and the 

average age of participants included was 33.6 years. The estimated prevalence of Hepatitis B, 

Hepatitis C, and HIV in this study was 2.7%, 3.6%, and 7.2% respectively. The females had a higher 

prevalence of Hepatitis C and HIV while the males in this study had a higher prevalence of Hepatitis 

B. 

Table 1: Summary of participant data. 

 Female(N=3,660) Male((N=2,747) Overall(N=6,407) 

HBV results    

Negative 3,582 (97.9%) 2,649 (96.4%) 6,231 (97.3%) 

Positive 77 (2.1%) 98 (3.6%) 175 (2.7%) 

Missing 1 (0.0%) 0 (0%) 1 (0.0%) 

HCV results    

Negative 3,528 (96.4%) 2,649 (96.4%) 6,177 (96.4%) 

Positive 131 (3.6%) 97 (3.5%) 228 (3.6%) 

Indeterminate/discre

p ant 

0 (0%) 1 (0.0%) 1 (0.0%) 

Missing 1 (0.0%) 0 (0%) 1 (0.0%) 

HIV status    

Discrepant 1 (0.0%) 1 (0.0%) 2 (0.0%) 

Negative 3,351 (91.6%) 2,586 (94.1%) 5,937 (92.7%) 

Positive 305 (8.3%) 158 (5.8%) 463 (7.2%) 

Missing 3 (0.1%) 2 (0.1%) 5 (0.1%) 

Age    

Mean (SD) 34.6 (18.0) 32.2 (18.6) 33.6 (18.3) 
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Median [Min, Max] 31.0 [13.0, 94.0] 26.0 [13.0, 97.0] 29.0 [13.0, 97.0] 

body mass index    

Mean (SD) 22.1 (4.08) 20.1 (2.98) 21.2 (3.77) 

Median [min, max] 21.5 [12.8, 55.9] 19.9 [10.5, 48.6] 20.7 [10.5, 55.9] 

Missing 188 (5.1%) 22 (0.8%) 210 (3.3%) 

 

Table 1 is a summary showing an overview of participant data used for this study including hepatitis 

B results and baseline characteristics, age, sex, body mass index, HCV, and HIV status of the GPC 

participants. 

 

As illustrated in table 2 below, baseline characteristics such as age, sex, body mass index, hepatitis 

C and HIV statuses of cases and controls were compared to check for significant differences to reduce 

bias. There was no significant difference in the mean age and body mass index of participants 

identified as cases as compared to those identified as controls. There was a significant difference 

between the number of males that identified as cases as compared to the females with the males 

having a higher prevalence of hepatitis B. There was no significant difference between Hepatitis C 

and HIV statuses of cases as compared to the controls. 

Table 2: Comparison of baseline characteristics between cases and controls. 

Baseline characteristic Statistical test Estimate P-value 

Age Welch two sample t-test -0.93289 0.3521 

Body mass index Welch two sample t-test 0.70373 0.4825 

Sex Pearson’s Chi-squared test 12.132 0.0004955 

Hepatitis C status Pearson’s Chi-squared test 0.79428 0.6722 

HIV status Pearson’s Chi-squared test 7.0678 0.06977 

 

Table 2 showing statistical tests run for comparison between the baseline characteristics between 

hepatitis B cases and controls. 
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      Figure 8: Proportion of GPC participants with Hepatitis B infection grouped by sex. 

 

 

Figure 8 shows the proportion of GPC participants with hepatitis B infection grouped by sex. 

 

4.2 Genome-wide association results 

The GWAS summary statistics after running the association obtained had 16,558,784 SNPs and only 

78 of these SNPs were considered to be of genome-wide significance while using the likelihood ratio 

test as a test statistic (p-value < 5x10-8). 

 

4.2.1 Functional mapping and annotation: SNP2GENE 

Functional mapping and annotation of GWAS summary statistics done using FUMAGWAS 

identified 22 genomic risk loci and 23 lead SNPs. Lead SNPs are independent SNPs maintained after 

clumping to remove SNPs that were in very high LD with them. Analysis of functional consequences 

of the SNPs on genes revealed that most of the SNPs were intergenic, followed by those that were 

intronic and only a few were ncRNA intronic and none were exonic as shown in Figure 9. None of 

the SNPs obtained had earlier been reported in the GWAS catalog for any other trait. 

Figure 9: Functional Consequences of SNPs on genes 
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Figure 9 shows the proportion of SNPs with different functional consequences on genes and reveals 

that most of the SNPs obtained were intergenic. 

 

Two genome-wide significance plots for visualization of GWAS summary statistics were made: a 

Manhattan plot and a qq plot. The Manhattan plot in Figure 10 depicts SNP association results in the 

genomic context. The SNP with the highest genome-wide significance was on chromosome 6. Figure 

11 shows a Manhattan plot with SNPs on given chromosomes mapped to their nearest genes POGK, 

MIXL1, RP11-24121.1, RP1-97D16.1, ADRB1, and RBFOX1. The input SNPs were mapped to 18015 

protein-coding genes and genome-wide significance of 2.774e-6 defined after Bonferroni multiple 

testing correction (0.05/18015). Only one gene (TMEM236) was shown to be of genome-wide 

significance as shown in Figure 12. The qq plot in figure 13 indicates compliance between the 

observed results and those expected by chance as the points were reasonably plotted along the slope 

except for a few outliers. 

Figure 10: Manhattan plot of GWAS summary statistics 

 

Figure 10 is a Manhattan plot illustrating the association between the SNPs in the UGR data and 
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hepatitis B infection susceptibility at genome-wide significance threshold of 5x10-8. The y-axis is the 

negative log10 of the p-value of the association between each SNP and hepatitis B infection 

susceptibility while the x-axis is the chromosome position. Each point represents a SNP and SNPs 

above the red dotted line represent genome-wide significant associations.  

Figure 11: Manhattan plot of SNPs mapped to their nearest genes. 

 

Figure 11 is a Manhattan plot showing genome-wide significant SNPs mapped to their nearest genes 

after SNP annotation. 

Figure 12: Gene-based (protein-coding genes) Manhattan plot. 

 

Figure 12 is a gene-based Manhattan plot after input SNPs were mapped to 18015 protein-coding 

genes. Genome-wide significance threshold (red dotted line) was defined at p-value=0.05/18015 
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=2.78e-6  

 

Figure 13: The qq plot of GWAS summary statistics 

 

Figure 13 is a qq plot to assess population substructure in the GWAS of hepatitis B infection 

susceptibility. The x axis depicts the expected –log10 of the p-values while the y axis has the observed 

negative log10 p-values. 

4.2.2: Functional mapping and annotation: GENE2FUNC 

24 genes were used as input for the GENE2FUNC and all of them had recognized Ensembl IDs. 

There was no significant differential expression of the genes nearest to the significant SNPs in the 

summary statistics. These genes ADRB1, MIXL1, POGK, and RBFOX1 as seen in figure 14 do not 

show any differential gene expression in the liver and other tissues expected to be affected by 

Hepatitis B infection. There were no significantly enriched differentially expressed genes when 

investigated in 54 tissue types as shown in figure 15 below. 
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Figure 14: Gene expression heat map 

 

Figure 14 is a heat map showing gene expression of 24 genes mapped to identified genome wide 

associated SNPs in 54 tissue types.  

Figure 15: Differentially expressed genes. 

  

Figure 15 is a plot showing differentially expressed genes used for testing tissue specificity defined 
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for each label of each expression data set.  

 

4.3 Fine mapping results 

20 independent lead SNPs were obtained after clumping SNPs all 78 significant SNPs from the 

summary statistics in step ii of section 3.3.3.2 above. The number of credible sets (99% credible set 

size) derived for each of the 20 SNPs by counting the number of SNPs required to attain a cumulative 

posterior probability that is greater than or equal to 0.99 is represented in table 3 below. The SNP 

annotations that include the nearest gene to the lead SNP in that locus and their respective positions 

and distances from these particular genes are also included in table 2. 3.SNPs with the smallest 99% 

credible set size were considered as probable specific causal variants that were possibly driving the 

association in that locus. As noted in the results in table 3 below, one of the SNPs with the smallest 

credible set size was in an intronic position while the one in an intergenic position was quite distant 

from its nearest gene. The SNPs nearest to the genes identified in the functional mapping and 

annotation: SNP2GENE section in 4.2.1 above MIXL1, POGK, and ADRB1 had considerably small 

credible set sizes of 5,8 and 9 respectively, and were considered to be the ones driving the associations 

in their respective loci. 

 

Table 3: Bayesian fine mapping results summary 

SNP rsid Chr:bp Nearest gene Distance 

from 

gene 

position E

A 

NE

A 

maf b se P-value # 

rs113453487 2:45902660 PRKCE 0 intronic C G 0.011 0.083 0.014 8.82e-09 1 

rs190525861 6:27676205 RP1-97D16.1 28573 intergenic A C 0.01 0.085 0.015 1.58e-08 1 

rs187715946 10:114957080 TCF7L2 29642 intergenic G T 0.014 0.083 0.014 1.67e-09 3 

rs114975164 18:27822248 RP11-675P14.1 470992 intergenic A T 0.018 0.068 0.012 1.16e-08 4 

rs115683525 16:89071260 CTD-25555A7.1 9482 intergenic G A 0.033 0.052 0.008 5.91e-10 5 

rs151106850 1:226401873 MIXL1 9445 intergenic C T 0.021 0.062 0.011 1.39e-08 5 

rs140791405 2:26653884 DRC1 0 intronic T C 0.015 0.068 0.012 3.15e-08 5 

rs114905599 3:152978084 RN7SL300P 60277 intergenic T C 0.016 0.073 0.013 2.13e-08 5 

rs76237083 20:11707956 RP11-268G13.1 39984 intergenic C T 0.011 0.082 0.014 1.68e-08 7 

rs73310381 8:111108679 RP11-403P13.1 9030 intergenic A G 0.051 0.041 0.007 4.03e-09 7 

rs75277414 1:166807469 POGK 1211 intergenic G A 0.012 0.094 0.014 8.46e-12 8 

rs12159250 22:25144676 PIWIL3 0 intronic T C 0.022 0.056 0.01 3.39e-08 8 

rs114388659 9:89143763 RP11-395D3.1 97304 intergenic G T 0.035 0.045 0.008 3e-08 8 

rs17875425 10:115798872 ADRB1 4933 intergenic G A 0.083 0.031 0.005 1.59e-08 9 

rs76175242 3:88931515 NARG2P2 65776 intergenic A G 0.012 0.081 0.015 3.25e-08 9 
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rs79126961 15:94755691 MCTP2 19075 intergenic G A 0.011 0.084 0.015 9.89e-09 12 

rs115069782 4:150195675 RP11-24I21.1 0 intronic C G 0.013 0.086 0.014 5.57e-10 16 

rs116723051 8:15801883 RP11-77B22.1 841 downstream C G 0.012 0.078 0.014 2.42e-08 23 

rs4424342 9:118284179 DEC1 119632 intergenic A G 0.031 0.048 0.009 1.84e-08 47 

rs148992333 6:140822037 AL356137.1 159722 intergenic T A 0.013 0.072 0.013 4.48e-08 71 

 

Table 3 showing localization of specific causal variants and the credible set size for each of the 20 

lead SNPs. The abbreviations are defined as, EA: effect allele, NEA: non effect allele, maf: minor 

allele frequency, b: beta effect estimate, se: standard error of the beta, #: number of credible sets 

(99% credible set size) 

 

4.4 Replication of genetic association findings 

Replication of association findings done in the two independent cohorts of European individuals 

failed to reproduce and validate the findings obtained in our discovery study. Two SNPs rs4424342 

and rs12159250 at chromosome 9 and 22 at base pair positions 118284179 and 25144676 respectively 

from the discovery dataset were found to be common and shared in both replication cohorts. 

However, due to the insignificant p-values of these SNPs in the replication cohorts, the replication 

was considered a failure.  As summarized in table 4, SNP rs4424342 had the same direction of effect 

and almost similar magnitude of effect in both studies, however, SNP rs12159250 had a remarkably 

different direction and magnitude of effect. In contradiction, table 5 shows SNP rs4424342 had a 

different direction and magnitude of effect while SNP rs12159250 had the same direction of effect 

with different magnitudes. 

Table 4: Replication with GWAS study accession ID GCST90012669. 

rsid Chr:pos 

(Build 

37) 

Discovery GWAS Replication cohort:  

Near

est 

gene 

E

A 

NE

A 

BET

A 

SE  maf p-value E

A 

NE

A 

BET

A 

SE maf p-

valu

e 

rs4424342 9:118284

179 

DEC

1 

G A -

0.04

8 

0.0

09 

0.0

23 

1.83802

4e-08 

G A -

0.02

7 

0.0

50 

0.0

86 

0.58

366 

rs12159250 22:25144

676 

PIWI

L3 

C T -

0.05

6 

0.0

10 

0.0

36 

3.38538

7e-08 

C T 0.01

03 

0.0

62 

0.0

57 

0.86

831 

 

Table 4 showing replication of GWAS on hepatitis B infection susceptibility using GCST90012669 

summary statistics to validate association findings. Abbreviations are defined as: EA: effect allele, 
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NEA: non effect allele, maf: minor allele frequency, BETA: beta effect estimate, SE: standard error of 

the beta, chr:pos; Chromosome:base pair position. 

 

Table 5: Replication with GWAS study accession ID  GCST006356.  

rsid chr:pos 

(Build 37) 

Discovery GWAS Replication cohort:  

Neares

t 

gene 

E

A 

N

E

A 

BE

TA 

SE maf p-value E

A 

N

E

A 

BET

A 

SE maf p-

valu

e 

rs4424342 9:1182841

79 

DEC1 G A -

0.04

8 

0.00

9 

0.02

3 

1.83e-08 G A 0.00

69 

0.18

9 

0.07

2 

0.97

087 

rs1215925

0 

22:251446

76 

PIWIL3 C T -

0.05

6 

0.01

0 

0.03

6 

3.39e-08 C T -

0.24

17 

0.20

3 

0.06

5 

0.23

417 

Table 5 showing replication of GWAS on hepatitis B infection susceptibility using GCST006356 

summary statistics to validate association findings. Abbreviations are defined as: EA: effect allele, 

NEA: non effect allele, maf: minor allele frequency, BETA: beta effect estimate, SE: standard error of 

the beta, chr:pos; Chromosome: base pair position. 

 

4.5 Causal effect of hepatitis B infection on serum levels of liver function biomarkers AST and 

ALT using Mendelian randomization. 

For each of the MR analyses, 19 variants were selected for downstream analysis. However, 3 of 

them were removed for being palindromic and 7 of them for being in high LD with the lead SNPs. 

A total of 9 SNPs were therefore used for the MR analysis.  

The MR analysis was performed using 9 SNPs and the results of the IVW method showed no causal 

effect of hepatitis B infection susceptibility on AST (ORIVW=1.01130, 95% CI 0.54575 - 1.87397, 

p= 0.97153) and MR Egger (OR=0.58022, 95% CI 0.10572-3.18442, p= 0.55078) as shown in table 

6. For ALT, MR analysis was also performed using 9 SNPs and the results of the IVW method also 

showed no causal effect of hepatitis B infection susceptibility on ALT (ORIVW=0.85428, 95% CI 

0.45877-1.59075, p=0.61952) and MR Egger (OR=1.50017, 95% CI 0.25295-8.89690, p=0.66868) 

as shown in table 7. The sensitivity analysis results in table 8 show no evidence of horizontal 

pleiotropy and heterogeneity. 

Plots were made for visualization of the obtained results as shown below. Forest plots showing the 

causal effect of hepatitis B infection susceptibility on AST and ALT serum levels in figures 16 and 

20 respectively. Scatter plots showing the effect of SNPs in the exposure on SNPs in each of the 

outcomes are shown in figures 17 and 20 respectively. Forest plots in Figure 18 show the effect of 

causal SNPs before and after running the leave-one-out analysis when AST was used as an outcome 
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and in Figure 21 for ALT as an outcome. The leave-one-out sensitivity analysis by removing one 

SNP at a time showed stable results for both outcome variables.  

Table 6: Causal effect of hepatitis B infection susceptibility on AST serum levels 

id. 

exposure 

id. 

outcome method 

N 

snp Beta 

Standard 

error p-value 

Odds 

ratio or_lci95 or_uci95 

HBV AST 

Inverse variance 

weighted 9 0.01123 0.31471 0.97153 1.01130 0.54575 1.87397 

HBV AST MR Egger 9 -0.54435 0.86868 0.55078 0.58022 0.10572 3.18442 

HBV AST Weighted median 9 -0.08002 0.41550 0.84728 0.92310 0.40885 2.08413 

HBV AST Weighted mode 9 -0.28601 0.49098 0.57625 0.75125 0.28698 1.96659 

HBV AST Simple median 9 0.01561 0.45610 0.97270 1.01573 0.41547 2.48326 

 

Table 6 showing the causal effect of hepatitis B infection susceptibility on serum AST levels using 9 

instrumental variables. Abbreviations: or_lci95: lower 95% confidence interval, or_uci95: upper 95% 

confidence interval 

 Table 7: Causal effect of hepatitis B infection susceptibility on ALT serum levels 

id. 

exposure 

id. 

outcome method 

N 

snp Beta 

Standar

d error p-value 

odds 

ratio or_lci95 or_uci95 

HBV ALT 

Inverse variance 

weighted 9 -0.15750 0.31720 0.61952 0.85428 0.45877 1.59075 

HBV ALT MR Egger 9 0.40558 0.90823 0.66868 1.50017 0.25295 8.89690 

HBV ALT Weighted median 9 -0.02695 0.41635 0.94839 0.97341 0.43042 2.20139 

HBV ALT Weighted mode 9 0.03012 0.59787 0.96105 1.03058 0.31927 3.32662 

HBV ALT Simple median 9 -0.03815 0.48568 0.93739 0.96257 0.37155 2.49373 

 

Table 7 showing the causal effect of hepatitis B infection susceptibility on serum ALT levels using 9 

instrumental variables. Abbreviations: or_lci95: lower 95% confidence interval, or_uci95: upper 

95% confidence interval 

Table 8: Heterogeneity and horizontal pleiotropy tests for the MR. 

Id. 

exposure 

Id. 

outcome 

test Method Effect size P-value 

HBV AST Heterogeneity Cochran’s Q test (MR Egger) Q=6.518734 0.4806444 
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Cochran’s Q test (IVW) Q=6.989581 0.5377572 

HBV AST Horizontal 

Pleiotropy 

MR Egger regression  Egger intercept 

 = 0.03781314 

0.5146758 

HBV ALT Heterogeneity Cochran’s Q test (MR Egger) Q=8.260569 0.3101791 

Cochran’s Q test (IVW) Q=8.782601 0.360663 

HBV ALT Horizontal 

Pleiotropy 

MR Egger regression Egger intercept 

 = -0.03833156 

0.5272789 

Table 8 showing the heterogeneity and horizontal pleiotropy tests done for the MR. 

Figure 16: A forest plot for causal effect of hepatitis B infection susceptibility on AST levels 

 

Figure 16 is a forest plot showing the association between hepatitis B infection susceptibility and 

AST levels with all the methods used depicted. 
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Figure 17: Scatter plot for causal effect of hepatitis B infection susceptibility on AST levels. 

 

Figure 17 is a scatter plot showing the association between hepatitis B infection susceptibility and 

AST levels with all the methods used depicted. 

Figure 18: Forest plots of causal effect before and after doing the leave one out analysis (left to 

right) 
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Figure 18: On the left; a forest plot showing the MR estimate and 95% confidence intervals (gray 

line segment) for each of the 9 SNPs and also shows the MR Egger and IVW results at the bottom. 

On the right, a forest plot showing leave one out analysis to evaluate whether any single 

instrumental variable was driving the causal effect. 

 

Figure 19: A forest plot of causal effect of hepatitis B infection susceptibility on ALT levels 

 

Figure 19 is a forest plot showing the association between hepatitis B infection susceptibility and 

ALT levels with all the methods used depicted. 
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Figure 20: Scatter plot for causal effect of hepatitis B infection susceptibility on ALT levels. 

 

Figure 20 is a scatter plot showing the association between hepatitis B infection susceptibility and 

ALT levels with all the methods used depicted. 

 

Figure 21: Forest plots showing causal effect before and after doing the leave one out analysis(left to right) 

  

Figure 21: On the left; a forest plot showing the MR estimate and 95% confidence intervals (gray 
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line segment) for each of the 9 SNPs and also shows the MR Egger and IVW results at the bottom. 

On the right, a forest plot showing leave one out analysis to evaluate whether any single 

instrumental variable was driving the causal effect. 
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CHAPTER FIVE: DISCUSSION 

5.1 Discussion 

This study investigated genetic determinants of differential susceptibility of hepatitis B infection 

among participants in a general population cohort in Kyamulibwa subcounty in Kalungu district, 

southwestern Uganda. It aimed at identifying SNPs that were associated with differential 

susceptibility to Hepatitis B infection among Ugandans to discover new risk factors unique to 

Ugandans and additionally address the underrepresentation of Africans in genetic studies. The 

estimated prevalence of hepatitis B infection in this study was 2.7% and this indicated a small number 

of individuals infected thereby confirming the reports by the Ministry of Health. The report generated 

by the Ministry of Health in Uganda in 2019 reported variations in prevalence of hepatitis B across 

regions with the southwestern region having the lowest prevalence (Ministry of Health, 2019). Males 

had a higher estimated prevalence of Hepatitis B infection confirming findings from previous studies 

indicating that females were less susceptible to viral infections as compared to males because they 

produce more effective and prolonged innate, humoral and cell-mediated immune responses 

(Giefing-Kroll, Berger, Lepperdinger, & Grubeck-Loebenstein, 2015; Ruggieri, Anticoli, 

D'Ambrosio, Giordani, & Viora, 2016) 

 

The GWAS analysis done in this study revealed 78 significant SNPs in 22 genomic risk loci which 

were associated with hepatitis B infection susceptibility. None of these SNPs had previously been 

reported to be associated with any trait on the GWAS catalog. This seemed to reinforce the fact that 

the inclusion of diverse African populations in genetic studies could unveil new risk factors and give 

an in-depth understanding of diseases (Gurdasani, Barroso, et al., 2019). None of the SNPs previously 

reported to be associated with Hepatitis B infection were identified in this study and this could be a 

result of a small case sample size (175 cases; 6231 controls) and probably population specific 

differences. It is therefore plausible that with a larger sample size with a balanced number of cases 

and controls, there is potential to identify more independent genomic risk loci and significant SNPs 

associated with hepatitis B infection susceptibility in an African ancestry population.  

 

The most significant SNPs on given chromosomes were mapped to their nearest genes POGK, 

MIXL1, RP11-24121.1, RP1-97D16.1, ADRB1, and RBFOX1.  The functions of proteins encoded by 

the Pogo transposable element derived with the KRAB (Kruppel-associated box) domain (POGK) 

gene are not well established (W. Xu et al., 2022). However, POGK has been previously associated 
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with liver cancer and its high expression confirmed to predict poor prognosis in patients with 

hepatocellular carcinoma (W. Xu et al., 2022). Some of the SNPs identified in this study could have 

mapped to POGK as the nearest gene because hepatitis B virus infection together with hepatitis C 

virus have been reported as the primary carcinogenic infectious agents of hepatocellular carcinoma 

(de Martel, Georges, Bray, Ferlay, & Clifford, 2020).  

 

The Mix paired-like homeobox (MIXL1) is reported to take part in signal transduction pathways and 

innate immune responses and has previously been associated with hepatitis C viral clearance (Y. 

Chen et al., 2016). The RNA binding protein fox-1, RBFOX1 has been previously included among 

the recurrent targeted genes for hepatitis B integration and reported to exhibit decreased expression 

in hepatitis B integration events in tumor-adjacent tissues among patients with liver cancer (Ding et 

al., 2012). Identification of SNPs in this study that mapped to RBFOX1 confirmed that changes in 

given genes such as this one that are used by viral DNA for integration into host chromosomes could 

be one of the plausible mechanisms for differential susceptibility to infections among individuals. 

TMEM236 is a transmembrane protein that may have a role in the viral binding of hepatitis B virus 

into the host cells and it has been previously associated with a unit decrease in Aspartate 

aminotransferase levels (Sinnott-Armstrong et al., 2021) which is a known liver function biomarker. 

The qq plot in figure 11 had a number of points reasonably plotted along the slope (null hypothesis) 

except for some outliers and it also did not show an early departure of the observed from the expected 

p-values. This seems to suggest that there is low evidence of population substructure and therefore 

suggestive of little or no systematic differences in allele frequencies due to population stratification 

(Turner, 2018) 

The results identified in the fine mapping show potential for identifying causal variants of hepatitis 

B infection susceptibility. However, most of the SNPs with small 99% credible set size were 

intergenic and quite distant from their nearest genes while a few were intronic. None of the lead SNPs 

was nearest to an exonic position and this is probably due to a small case sample size. Fortunately, 

some of the SNPs were nearest to genes POGK, MIXL1, and ADRB1) which have a biological and 

plausible role in the hepatitis B infection lifecycle, and these if studied in a larger sample size could 

inform what could be the specific causal variants driving the associations noted in differential 

susceptibility to hepatitis B infection. 

Replication of association findings in two independent cohorts of European ancestry focusing on 

hepatitis B surface antigen seropositivity as traits of interest was unsuccessful. This was probably 
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because two of the replication criteria had not been met while selecting the cohorts of replication; 

one suggested the use of replication data sets from similar populations as the discovery and another 

emphasized a larger sample size of the replication datasets as compared to discovery datasets in order 

to account for the winner’s curse problem (Chanock et al., 2007). It was also probably because of 

population specific differences such as allele frequency and effect size differences and also the low 

LD that is exhibited by the highly genetically diverse Africans as compared to the Europeans 

(Tishkoff et al., 2009).  

This study explored the causal effect of hepatitis B infection susceptibility on serum levels of liver 

function biomarkers AST and ALT using two sample MR analysis. The results showed no significant 

causal effect of hepatitis B infection susceptibility on AST and ALT serum levels. Sensitivity analysis 

demonstrated no evidence of horizontal pleiotropy and heterogeneity while the leave-one-out analysis 

suggested the robustness of results obtained.  

The obtained results show potential for the determination of the causal effect of hepatitis B infection 

susceptibility on liver function biomarkers ALT and AST if more instrumental variables are obtained 

from GWAS studies with bigger case sample sizes of hepatitis B infection susceptibility. An 

observational  study evaluating hepatitis B infection as a precursor of alteration of hepatic enzymes 

and compounds among antenatal patients revealed that it caused changes in their levels but this was 

highly dependent on the stage of infection and influenced by other factors such as alcohol 

consumption (Abulude, Ahmed, & Sadisu, 2017). In the past ALT levels were used to make treatment 

decisions for patients chronically infected with hepatitis B, however, this was ruled out since some 

patients with high hepatitis B DNA levels were found to have normal ALT levels thereby being 

denied proper treatment (Sarin & Kumar, 2008). As of July 2023, a few studies had been conducted 

using Mendelian randomization approaches on hepatitis B infection, and of which all these studies 

are conducted in non-African populations. Therefore, this study is probably the first to assess the 

causal effect of hepatitis B infection susceptibility on liver function biomarkers in an African ancestry 

population using Mendelian randomization. 
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CHAPTER SIX: CONCLUSION, LIMITATIONS & RECOMMENDATIONS 

6.1 Conclusions  

The study identified 78 genome-wide significant SNPs in 22 genomic loci and genes POGK, MIXL1, 

ADRB1, RBFOX,1 and TMEM236 that are associated with hepatitis B infection susceptibility. We 

could not replicate the genetic association findings obtained in our study due to the unavailability of 

publicly available data on African populations looking at our similar trait of interest. This failure to 

validate association findings reinforces the need for including African populations in genetic studies 

to support replication steps and other post-GWAS analysis that require publicly available data. 

This was probably the first study to perform causal inference of hepatitis B infection susceptibility 

on ALT and AST levels and it suggested that hepatitis B infection susceptibility is not causally 

associated with alterations in levels of liver function biomarkers ALT and AST. These results show 

a high potential for the detection of novel genetic risk loci associated with hepatitis B infection 

susceptibility and a deeper understanding of underlying biological mechanisms involved among 

individuals of African Ancestry given that there were significant findings noted even with a small 

case sample size. 

 

6.2 Limitations of the study 

The study had the following limitations, first, hepatitis B infection susceptibility definition was not 

well done due to the inability to perform further tests to further characterize whether the infection 

was current or past among the infected individuals. This is because the samples available were not 

adequate for tests required to be performed. Second, the study focused on finding common SNPs and 

left out rare SNPs since genome wide association studies generally do not identify rare variants (Tam 

et al., 2019). Third, the study had a very small case sample size as compared to the controls and this 

probably inhibited the detection of causal SNPs associated with hepatitis B infection susceptibility.  

Fourth, we could not compare and validate our findings with other studies. This is because there are 

few genome-wide association studies focusing on hepatitis B that have been done probably because 

it is an infectious disease with none done in an African population. 

 

6.3 Recommendations 

There is need to conduct this study with a better-defined phenotype and a larger sample size where 

the numbers of cases and controls are well balanced to achieve very high statistical power  
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